UNIVERSIDAD JOSÉ CARLOS MARIÁTEGUI

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL

TESIS:

"EFECTO DEL USO DEL COAGULANTE NATURAL DE TUNA (Opuntia ficus-indica) EN LA CALIDAD DEL AGUA DEL LADO

BAJO DEL CENTRO POBLADO SAN ANTONIO,

DISTRITO DE MOQUEGUA EN LA

PROVINCIA MARISCAL NIETO,

REGION MOQUEGUA 2015"

PRESENTADO POR:

BACHILLER BELEN STEFANNY TEJADA TUMBA

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO AMBIENTAL.

MOQUEGUA – PERÚ 2015

PÁGINA DE JURADO

DR. EDGAR VIRGILIO BEDOYA JUSTO PRESIDENTE
MGR. LILIA MARY MIRANDA RAMOS SECRETARIO
ING. JOSÉ LUIS CRUZ MAMANI MIEMBRO
MGR. BLGO. JOSE ANTONIO VALERIANO ZAPANA ASESOR

RESUMEN INTRODUCCIÓN

I.	С	APIT	'ULO I:	1
PL	.ANT	EAMI	ENTO DEL PROBLEMA	1
	1.1	Des	cripción del problema	1
	1.1.	1	La problemática de la contaminación del agua	1
	Probl	lemát	ica del agua a Nivel Regional	6
	1.2	Forr	nulación del problema	11
	1.2.1		Problema principal	11
	1.2.2		Problemas secundarios	12
	1.3	Obje	etivos	13
	1.3.	.1	General	13
	1.3.	2	Especifico	13
	1.4	Just	ificación	13
	1.5	Forr	nulación de la hipótesis	14
	1.5.	.1	Hipótesis Global	14
	1.5.	2	Hipótesis Derivadas	14
	1.6	Ope	racionalizaciòn de variables	15
	1.6.	.1	Identificación de variables	15
	1.7	Alca	ince y Limitaciones	16
	1.7.	.1	Alcances	16
	1.7.	2	Limitaciones	17
II.	С	APIT	'ULO II	18
MA	ARCO	TEĆ	DRICO	18
	2.1	Ante	ecedentes de la investigación	18
	2.2	Bas	es Teóricas	21
	2.2.	.1	Agua	21
	2	.2.1.1	Parámetros Físicos del agua	21
	2	.2.1.2	Parámetros Químicos del agua	26
	2.2.	2	Coagulación y Floculación	27

2.2.2.	1 Coagulación	27
2.2.2.	2 Floculación	32
2.2.3	La tuna como coagulante	34
2.2.3.	1 Taxonomía de O <i>puntia ficus-indica</i> "TUNA"	34
2.2.3.	2 Características Principales de la Tuna	34
2.2.4	Medición de los Parámetros del agua	37
2.3 Bas	e legal Estandares de calidad del agua para la agricultura	37
III. CAPI	ГULO III:	41
MATERIALE	S Y METODOS	41
3.1 Mat	eriales	41
3.1.1	Materiales de Campo	41
3.1.2	Materiales de Laboratorio	41
a)	Equipos	41
b)	Materiales de laboratorio	42
3.2 Met	odología de Estudio: Fase de campo	42
3.2.1	Muestra de Tuna	42
a)	Recolección de las pencas de tuna	42
b)	Adecuación de la materia prima e insumos	43
3.2.2	Muestra de Agua	44
a)	Recolección de Muestras de Agua	44
b)	Recolección de datos de las Muestras de Agua	46
3.2.3	Efecto del Coagulante, y muestras	47
3.2.3.	1 Turbidez (NTU)	48
3.2.3.	2 pH	48
3.2.3.	3 Conductividad	48
3.2.3.	4 Salinidad	49
3.2.3.	5 Temperatura	49
3.2.3.	6 Oxígeno Disuelto	50
3 2 3	7 Color	50

3.3	Diseño de Investigación	51		
3.3	.1 Diseño de los Factores Fisicoquímicos	51		
3.3	.2 Diseño del Factor de la Calidad del Agua	52		
3.4	Procedimiento de análisis de Datos	57		
3.4	.1 Análisis de Varianza ANOVA	58		
3.4	.2 Prueba de tuckey	59		
3.4	.3 Unidad Experimental	30		
IV. C	CAPITULO IV:	60		
RESUL	TADOS Y DISCUSIONES	60		
4.1	Resultados	30		
V. C	CAPITULO V	94		
CONCLUSIÓNES Y RECOMENDACIONES9				
5.1	Conclusiones	94		
5.2	Recomendaciones	96		

Índice de Tablas			
Tabla 1	Principales fuentes de agua	3	
Tabla 2	Balance hídrico	8	
Tabla 3	Derecho de uso de agua	9	
Tabla 4	Taxonomía del Nopal	35	
Tabla 6	Parámetros para riego de Vegetales	40	
Tabla 7	Tamaño de las Pencas	43	
Tabla 8	Referencia geográfica del punto de Muestreo	45	
Tabla 9	Etiqueta de muestra	46	
Tabla 10	Muestras y Dosificaciones	47	
Tabla 11	Diseño del factor de la calidad del agua	53	
Tabla 12	Turbidez promedio de los tratamientos	61	
Tabla 13	Prueba de homogeneidad de varianzas	62	
Tabla 14	Prueba de ANOVA en turbidez	63	
Tabla 15	Cuadro de comparaciones múltiples en		
	Tratamientos (TUKEY)	64	
Tabla 16	Comparaciones múltiples (post hoc), TUKEY	65	
Tabla 17	pH promedio de los tratamientos	67	
Tabla 18	Prueba de homogeneidad de varianzas	68	
Tabla 19	Prueba de ANOVA en el pH	68	
Tabla 20	Cuadro de comparaciones múltiples en		
	Tratamiento (TUKEY)	69	
Tabla 21	Comparaciones múltiples (post hoc),TUKEY	71	
Tabla 22	O.D. promedio de los tratamientos	72	
Tabla 23	Prueba de homogeneidad de varianzas	73	
Tabla 24	Prueba de ANOVA en el O.D.	73	
Tabla 25	Cuadro de comparaciones múltiples en		
	Tratamiento (TUKEY)	74	
Tabla 26	Comparaciones múltiples (post hoc), TUKEY	75	
Tabla 27	Color promedio de los tratamientos	77	
Tabla 28	Prueba de homogeneidad de varianzas	78	
Tabla 29	Prueba de ANOVA en el Color	78	
Tabla 30	Cuadro de comparaciones múltiples en		
	Tratamiento (TUKEY)	79	
Tabla 31	Comparaciones múltiples (post hoc), TUKEY	81	
Tabla 32	Conductividad promedio de los tratamientos	82	
Tabla 33	Prueba de homogeneidad de varianzas	83	
Tabla 34	Prueba de ANOVA en el Conductividad	83	
Tabla 35	Cuadro de comparaciones múltiples en		
	Tratamiento (TUKEY)	84	
Tabla 36	Comparaciones múltiples (post hoc), TUKEY	86	
Tabla 37	Análisis fotoquímico de la Tuna	87	
Tabla 38	Balance de masa por operación	88	
Tabla 39	Propiedades del polvo extraído de la Tuna	89	
Tabla 40	Condiciones iniciales del agua cruda o M-0	90	

Índice de Figuras Pág. Figura 1 Usos del agua en los Sectores 4 Figura 2 Estadística del uso del agua 4 Figura 3 Volumen de agua con derechos 10 Figura 4 Concentración de saturación de oxígeno en agua 25 Figura 5 Proceso de Coagulación-floculación 29 35 Figura 6 Pencas de Nopal Figura 7 Espectro infrarrojo del coagulante obtenido de la Tuna 36 Figura 8 Georreferencia del Punto de Muestreo 45 Multiparametrico YSI MODELO 63 105 Figura 9 Multiparametrico YSI Proodo Figura 10 107 Turbidimetro 2100Q Figura 11 110 Figura 12 Medidor de color – Escala Hazen 112 Figura 13 Regla de color – Escala Hazen 114 **Anexos** Pág. Anexo 1 Lecturas de los parámetros 98 Anexo 2 Obtención del coagulante 100 Descripción de Equipos Anexo 3 101 Anexo 4 Toma de muestras 119 Anexo 5 Muestras en laboratorio y dosificación de coagulante 122 Anexo 6 Calibración y equipos 125 Aplicación del coagulante en las muestras 126 Anexo 7 Lecturas de las muestras 130 Anexo 8 135 Anexo 8 Plano de ubicación del punto de muestreo Índice de Gráficos Pág. Grafico 1 Gráfico de Cajas de las medias en turbidez 66 Grafico 2 Gráfico de Cajas de las medias de pH 71 Grafico 3 Gráfico de Cajas de las medias de Oxígeno Disuelto 76 Grafico 4 Gráfico de Cajas de las medias de color 81

Gráfico de Cajas de las medias en conductividad

a. Porcentaje de remoción de color

b. Porcentaje de remoción de turbidez

86

91

91

Grafico 5

Gráfico 6

Dedicatoria

A mi madre, que iluminó el camino y me alentó durante todo el tiempo, sin condicionar su soporte. Porque en los momentos más inadvertidos se convirtió en la mejor compañera.

A mi familia, que es el motivo para seguir mejorando como hija, sobrina, amiga y profesional, pero principalmente como persona, porque es necesario para el progreso de esta sociedad.

Agradecimiento

A mi madre, Angela, por atender y apoyar aun sin comprender cada una de las metas trazadas en el lineamiento de mi vida; manteniendo su fe intacta incluso ante mis errores y caídas, acompañándome con paciencia a dejar las primeras marcas de mi profesión.

A mi enamorado, John, que tras sus constantes palabras de aliento me impulsó a potenciar mi capacidad, ampliando mi visión de compromiso social y bienestar, para obtener mi título profesional, pero principalmente por haber despertado en mí un concepto a aplicar por el resto de mi vida: la mejora continua.

Al ingeniero Joe Cordero, por mostrarme y enseñarme el uso de los equipos, y por permitirme desarrollar mis pruebas en la Unidad Minera Cuajone; esto hizo posible alcanzar el conocimiento básico para el desarrollo de la investigación.

Por último, y no menos importante, quiero agradecer a mi asesor Mgr. Blgo. José Antonio Valeriano Zapana, por no haberme alejado de los objetivos de mi investigación y por su compromiso para con mi trabajo.

Belen Stefanny Tejada Tumba

Resumen

El presente trabajo de investigación tiene como objetivo determinar el efecto del uso del coagulante natural de la tuna (*Opuntia ficus-indica*) en la calidad del agua en el sector del lado bajo de San Antonio, en el distrito de Moquegua.

Se aplicó un diseño experimental completamente aleatorio, en el que se comparan tratamientos, cada uno con 3 réplicas (15 lecturas). La muestra se recogió en envases de plástico de boca ancha (1 L.). Se eligió como punto de muestreo el canal que se encuentra en la zona de Santa Rosa, punto céntrico de distribución del agua para cinco chacras aledañas. Las pencas utilizadas en el proceso pesan aproximadamente 2410 gr. La tuna picada o pulpa pesó aproximadamente 1510 gr, y el resto de la corteza unos 900 gr. Estas fueron dispuestas al azar y cada tratamiento se vertió en forma aleatoria en cada botella de muestra de agua recogida. El coagulante se pesó en bolsitas de 1 gr., 0.70 gr., 0.50 gr., 0.15 gr., 0.10 gr. Para ser utilizados en las muestras de agua recolectadas (M0, M1, M2, M3, M4, M5).

Como conclusión general, se encontró que el uso del coagulante natural de la tuna (Opuntia ficus-indica), tiene un efecto positivo en los parámetros pH, oxígeno disuelto y color de la calidad del agua en la zona del lado bajo de San Antonio, pero no en la turbidez.